Krylov subspace methods for estimating operator-vector multiplications in Hilbert spaces

نویسندگان

چکیده

Abstract The Krylov subspace method has been investigated and refined for approximating the behaviors of finite or infinite dimensional linear operators. It used eigenvalues, solutions equations, operator functions acting on vectors. Recently, time-series data analysis, much attention is being paid to as a viable estimating multiplications vector by an unknown referred transfer operator. In this paper, we investigate convergence analysis methods operator-vector multiplications.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Operator-valued bases on Hilbert spaces

In this paper we develop a natural generalization of Schauder basis theory, we term operator-valued basis or simply ov-basis theory, using operator-algebraic methods. We prove several results for ov-basis concerning duality, orthogonality, biorthogonality and minimality. We prove that the operators of a dual ov-basis are continuous. We also dene the concepts of Bessel, Hilbert ov-basis and obta...

متن کامل

Numerical Methods for the QCD Overlap Operator: II. Optimal Krylov Subspace Methods

We investigate optimal choices for the (outer) iteration method to use when solving linear systems with Neuberger’s overlap operator in QCD. Different formulations for this operator give rise to different iterative solvers, which are optimal for the respective formulation. We compare these methods in theory and practice to find the overall optimal one. For the first time, we apply the so-called...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Japan Journal of Industrial and Applied Mathematics

سال: 2021

ISSN: ['0916-7005', '1868-937X']

DOI: https://doi.org/10.1007/s13160-021-00460-4